

Cyclotron Production of I-123 by Bombardment of ¹²⁴Te Electroplated Target

Zhou Wei, Wang Yongxian, Yin Duanzhi Shanghai Institute of Applied Physics,

Chinese Academy of Science

Nuclear process for production of ¹²³I

```
Direct method: (low energy cyclotron)
^{121}Sb(\alpha,2n)^{123}I, ^{nat}Sb(^{3}He,xn)^{123}I,
^{124}\text{Te}(p,2n)^{123}\text{I}, \quad ^{123}\text{Te}(p, n)^{123}\text{I},
^{122}\text{Te}(d,2n)^{123}\text{I} .....
\geq Indirect method: ^{123}Xe\longrightarrow ^{123}I
(medium and high energy cyclotron)
^{127}I(p, 5n)^{123}Xe, ^{124}Xe(p, 2n)^{123}Xe
^{124}Xe(p, pn)^{123}Xe .....
```


Te target for production of I-123

- Metal ¹²⁴Te target
 2π or 4π cooling
 wet chemical separation
- Molten ¹²⁴TeO₂ target
 4π cooling
 dry distillation

Source for ¹²⁴TeO₂ lost

- Target heating to liberate ¹²³I loss of ¹²⁴TeO₂:<1%
- Accidental melting during irradiation 2π cooling system irradiation angle: 6 ° loss of ¹²⁴TeO₂:3~5%

Production method for electroplated target

- ≥ 124Te electroplated Target----molten target
- > Irradiation
- > Wet chemical separation -----dry distillation
- > Recovery of the enriched tellurium
- Quality control

Targetry Ni surface onto the Cu plate

➤ Ni plating solution:

 $NiSO_4 \cdot 6H_2O$

NiCl₂·6H₂O

 H_3BO_3

> pH: 3~4.

Targetry Ni surface onto the Cu plate

- Current: 200mA
- Time: 12 min
- ➤ Anode: platinum electrode
- Cathode: Cu plate
- Current efficiency: 90%
- ➤ Ni thickness: 250ug/cm²

Electroplating of enriched ¹²⁴Te

- > Stock solution
- * $^{124}\text{Te} \longrightarrow ^{124}\text{Te O}_2$
- KOH solution
- ◆ pH: 10~11

Targetry Electroplating of enriched ¹²⁴Te

- Current:100mA
- Time: 60 min
- Thickness: 12mg/cm²
- > Wash
- Dry

¹²⁴Te electroplated target

Irradiation

- Cyclone 30 (IBA)
- > Proton energy: 25 MeV
- Beam current intensity: 20~50μA
- Time of irradiation: 0.5~3hr
- \geq 123 I yield: 8.2 mCi/ μ A h
- ≥ 124Te loss: <1% each run

Separation of I-123 from tellunium

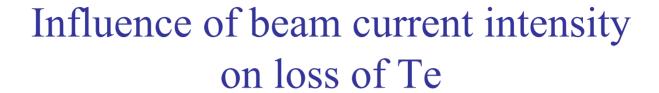
- ➤ Dissolution of ¹²⁴Te(NaOH+ H₂O₂)
- > Aluminum power
- > Heating gently
- > Stream distillation
- \triangleright Precipitation (Te⁰ +Al(OH)₃)
- Filter
- ➤ Radiochemical yield : >90%

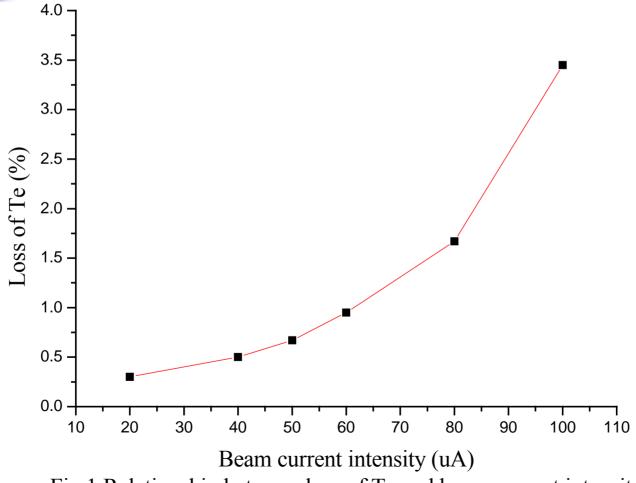
Recovery of the enriched Te-124

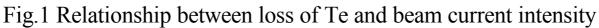
- Dissolution of power($Te^0 + Al(OH)_3$) $H_2SO_4 + H_2O_2$
- **→** Distillation
- > Hypophosphorus acid
- > Precipitate of tellurium
- washed and dried
- ≥ 124Te recovery : >99.5%

Quality Control

- > Radionuclidic purity
- > Radioactivity concentration
- > Radiochemical purity
- >pH value
- Concentration of Al & Te
- ➤ Bacterial endotoxins

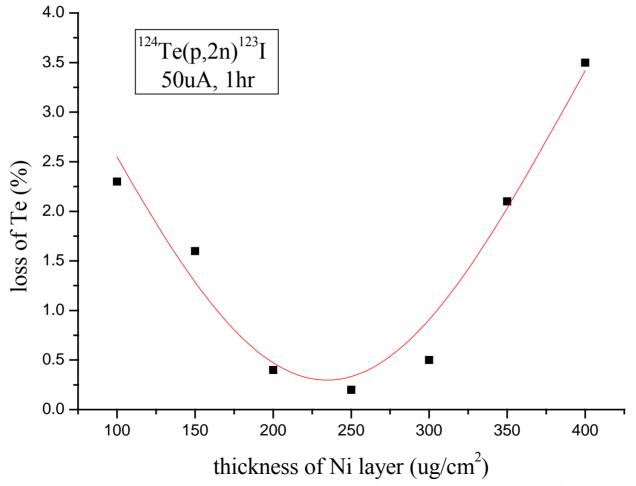
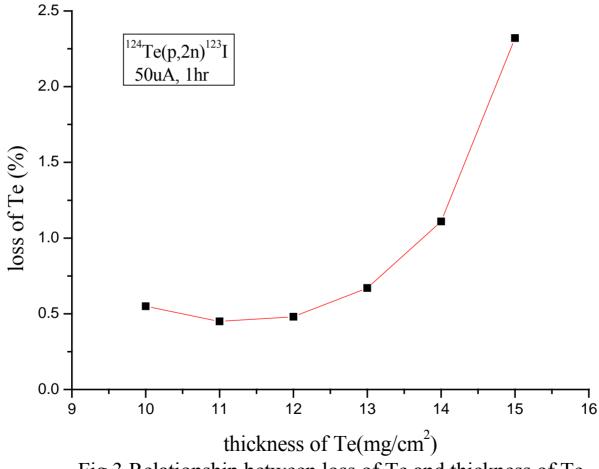


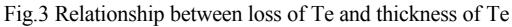

4

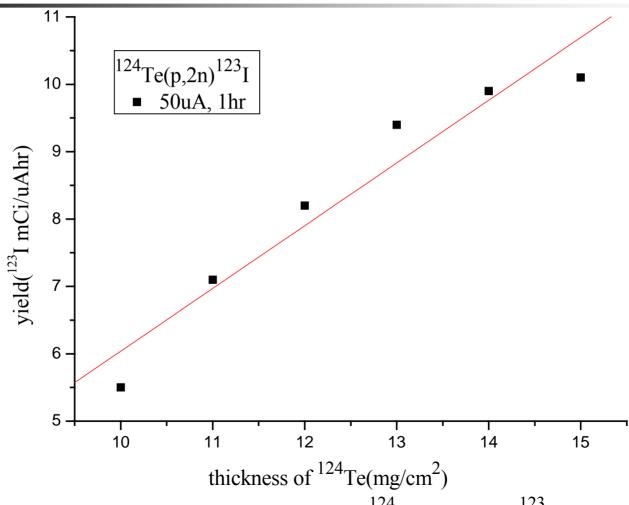

Result and discussion

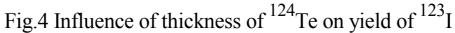
- Target thickness: Ni 250ug/cm², Te 12mg/cm²
- > 123 I yield: 8.2mCi/ μ A hr
- ≥ 124Te loss: 1% each run
- Radiochemical yield: >90%
- ≥ 124Te recovery : >99.5%

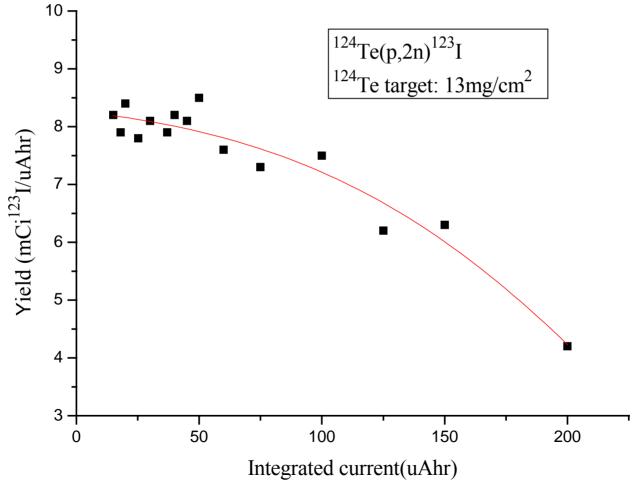
Influence of thickness of Ni layer on loss of Te


Fig.2 Relationship between loss of Te and thickness of Ni layer


Influence of thickness of Te on loss of Te




Influence of thickness of Te on yield of ¹²³I

Specification of ¹²³I solution

- ➤ Radionuclidic purity: >98%.
- ➤ Radiochemical purity: Iodide ¹²³I >95%
- ➤ Radioactivity concentration: >3700 MBq/mL.
- >pH value: 7.5~9.0
- Concentration of Al: < 1ug/mL
- ➤ Concentration of Te: <1ug/mL
- ➤ Bacterial endotoxins: <30EU/mL

Thank you for your attention!

