Cyclotron Production of I-123 by Bombardment of ^{124}Te Electroplated Target

Zhou Wei, Wang Yongxian, Yin Duanzhi

Shanghai Institute of Applied Physics,
Chinese Academy of Science
Nuclear process for production of ^{123}I

- **Direct method:** (low energy cyclotron)
 - $^{121}\text{Sb}(\alpha,2n)^{123}\text{I}$,
 - $^{\text{nat}}\text{Sb}(^3\text{He},xn)^{123}\text{I}$,
 - $^{124}\text{Te}(p,2n)^{123}\text{I}$,
 - $^{123}\text{Te}(p, n)^{123}\text{I}$,
 - $^{122}\text{Te}(d,2n)^{123}\text{I}$

- **Indirect method:** $^{123}\text{Xe} \rightarrow ^{123}\text{I}$
 (medium and high energy cyclotron)
 - $^{127}\text{I}(p, 5n)^{123}\text{Xe}$,
 - $^{124}\text{Xe}(p, 2n)^{123}\text{Xe}$
 - $^{124}\text{Xe}(p, pn)^{123}\text{Xe}$
Te target for production of I-123

- Metal 124Te target
 - 2π or 4π cooling
 - wet chemical separation
- Molten 124TeO$_2$ target
 - 4π cooling
 - dry distillation
Source for $^{124}\text{TeO}_2$ lost

- Target heating to liberate ^{123}I
 - loss of $^{124}\text{TeO}_2$: $<1\%$
- Accidental melting during irradiation
 - 2π cooling system
 - irradiation angle: 6 °
 - loss of $^{124}\text{TeO}_2$: 3~5%
Production method for electroplated target

- 124Te electroplated Target----molten target
- Irradiation
- Wet chemical separation -----dry distillation
- Recovery of the enriched tellurium
- Quality control
Targetry
Ni surface onto the Cu plate

- Ni plating solution:
 \[\text{NiSO}_4 \cdot 6\text{H}_2\text{O} \]
 \[\text{NiCl}_2 \cdot 6\text{H}_2\text{O} \]
 \[\text{H}_3\text{BO}_3 \]
- pH: 3 ~ 4.
Targetry
Ni surface onto the Cu plate

- Current: 200mA
- Time: 12 min
- Anode: platinum electrode
- Cathode: Cu plate
- Current efficiency: 90%
- Ni thickness: 250ug/cm²
Targetry
Electroplating of enriched ^{124}Te

- Stock solution
 - $^{124}\text{Te} \rightarrow ^{124}\text{TeO}_2$
 - KOH solution
 - pH: 10～11
Targetry
Electroplating of enriched 124Te

- Current: 100 mA
- Time: 60 min
- Thickness: 12 mg/cm2
- Wash
- Dry
^{124}Te electroplated target
Irradiation

- Cyclone 30 (IBA)
- Proton energy: 25 MeV
- Beam current intensity: 20~50 µA
- Time of irradiation: 0.5~3 hr
- 123I yield: 8.2 mCi/µA h
- 124Te loss: <1% each run
Separation of I-123 from tellunium

- Dissolution of $^{124}\text{Te}(\text{NaOH} + \text{H}_2\text{O}_2)$
- Aluminum power
- Heating gently
- Stream distillation
- Precipitation ($\text{Te}^0 + \text{Al(OH)}_3$)
- Filter
- Radiochemical yield: >90%
Recovery of the enriched Te-124

- Dissolution of power\((\text{Te}^0 + \text{Al(OH)}_3)\)
 \[\text{H}_2\text{SO}_4 + \text{H}_2\text{O}_2 \]
- Distillation
- Hypophosphorus acid
- Precipitate of tellurium
- washed and dried
- ^{124}Te recovery : $>99.5\%$
Quality Control

- Radionuclidic purity
- Radioactivity concentration
- Radiochemical purity
- pH value
- Concentration of Al & Te
- Bacterial endotoxins
Result and discussion

- **Target**
 - thickness: Ni 250ug/cm², Te 12mg/cm²
- 123I yield: 8.2mCi/µA hr
- 124Te loss: 1% each run
- Radiochemical yield: >90%
- 124Te recovery: >99.5%
Influence of beam current intensity on loss of Te

Fig. 1 Relationship between loss of Te and beam current intensity
Influence of thickness of Ni layer on loss of Te

Fig. 2 Relationship between loss of Te and thickness of Ni layer

$^{124}\text{Te(p,2n)}^{123}\text{I}$

50μA, 1hr
Influence of thickness of Te on loss of Te

Fig. 3 Relationship between loss of Te and thickness of Te

$^{124}\text{Te}(p,2n)^{123}\text{I}$

50uA, 1hr

loss of Te (%) vs. thickness of Te (mg/cm2)
Influence of thickness of Te on yield of 123I

Fig. 4 Influence of thickness of 124Te on yield of 123I
Influence of integrated current on yield of ^{123}I

$^{124}\text{Te(p,2n)}^{123}\text{I}$

^{124}Te target: 13mg/cm²

Fig. 5 Relationship between yield of ^{123}I and integrated current
Specification of 123I solution

- Radionuclidic purity: $>98\%$.
- Radiochemical purity: Iodide 123I $>95\%$
- Radioactivity concentration: >3700 MBq/mL.
- pH value: 7.5~9.0
- Concentration of Al: $<1\mu$g/mL
- Concentration of Te: $<1\mu$g/mL
- Bacterial endotoxins: <30EU/mL
Thank you for your attention!